Compton Lecture #7: Life On, In, and Around Neutron Stars

Welcome!

On the back table:

- Lecture notes for today's lecture
- Extra copies of last week's are on the back table
- Sign-up sheets
 - please fill one out only if you're not already on the Compton Lectures mailing list or need to change your address
- Luncheon Sign-up sheets
 - for lunch following the final lecture on Dec 13

■ No lecture Nov 29th or Dec 6th!

Stars: Then Low Life On, In, and Around Neutron Stars

Brian Humensky 68th Series, Compton Lecture #7 November 22, 2008

Outline

Degenerate gases
Neutron stars
Pulsars
Pulsar Wind Nebulae

Key Points to Take Away

- Neutron stars form from the collapse of massive stars and are supported against gravity by degenerate-neutron pressure.
- Pulsars are spinning neutron stars with strong magnetic fields.
 - Radio pulses probably originate near the magnetic poles.
 - High-energy pulses (optical, X-ray, gamma ray) can also be seen origins still unclear.
 - The Fermi gamma-ray observatory will provide a wealth of new information about pulsars.
- Pulsar wind nebulae are clouds of energetic particles that form from the winds coming off of pulsars.
 - Visible from radio through TeV gamma rays in some cases.
 - The Crab Nebula is the classic example brightest steady TeV gamma-ray source.

Degenerate Gases

Comparison: Ideal vs Degenerate Gases

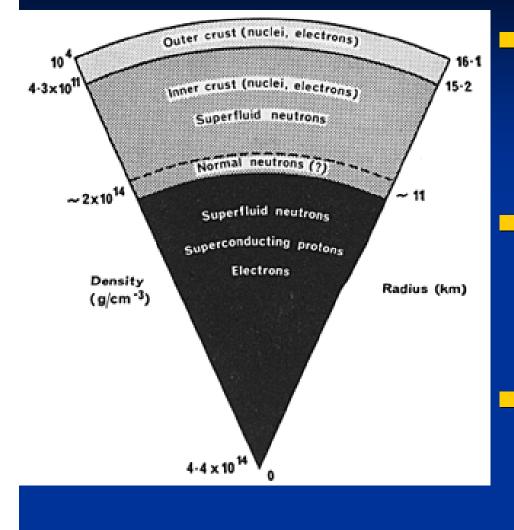
- Ideal gas: particles are pointlike, no long-range interactions
- Pressure proportional to density, temperature:
 - $p \propto n * T / V$
 - pressure driven by random thermal motions of particles
 - pressure $\rightarrow 0$ as temperature $\rightarrow 0$
- Self-regulating
- Describes familiar gases well (air, Sun, ...)

- Degenerate gas: inherently quantum mechanical
 - particles occupy discrete "states" (position/momentum)
 - Fermi exclusion principle: no two particles can be in same state
 - particles fill states from lowest energy up
 - Heisenberg uncertainty principle: position and momentum cannot both be known arbitrarily well

 $\Rightarrow \Delta x * \Delta p \sim \hbar$

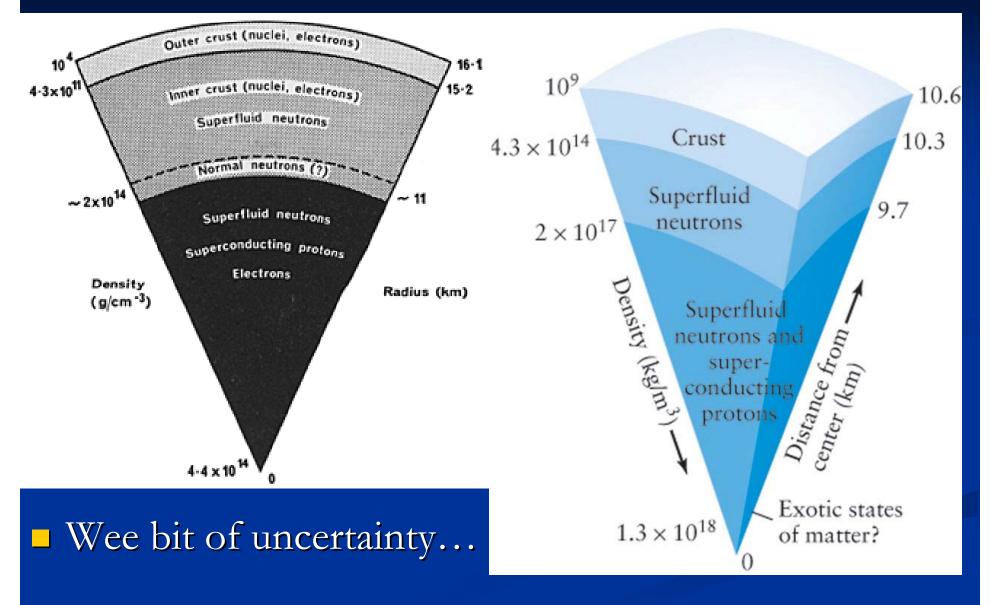
- High density \Rightarrow high momenta
- Pressure dictated by density, independent of temperature
- Pressure > 0 at T = 0 !

White Dwarfs and Degenerate Electrons


- White dwarfs are supported by degenerate-electron pressure
 - states filled to point where some electrons have very high momenta
- If fusion starts, temperature rises
 - fusion rate rises with temperature
 - \rightarrow runaway process unless there's a way to control temperature
- Ideal gas: rise in temperature increases pressure and gas expands, cools – self-regulating
- Degenerate gas: rise in temperature does NOT affect pressure – no way to cool! (until it's too late)

Neutron Stars

How Neutron Stars Form


Collapsed cores of massive stars ~ 8 - 20+ M_☉
Following supernova, neutron-rich matter coalesces, cools ⇒ neutron star
Asymmetric explosions ⇒ "kick" of ~ 400 - 500 km/s
Mass range of ~ 1.4 - 2.1 M_☉
≥ 1.4 M_☉ to overcome electron degeneracy pressure
≥ 2 - 3 M_☉ for support by neutron degeneracy pressure
otherwise collapse to black hole → next week

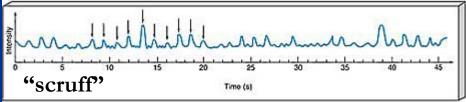
Neutron Star Interiors

Outer Crust: solid, similar to a white dwarf: heavy nuclei in a Coulomb lattice + degenerate electrons Inner Crust: transition region neutron-rich nuclei, relativistic degenerate electrons, degenerate neutrons Neutron liquid: superfluid neutrons superconducting protons normal electrons

Neutron Star Interiors

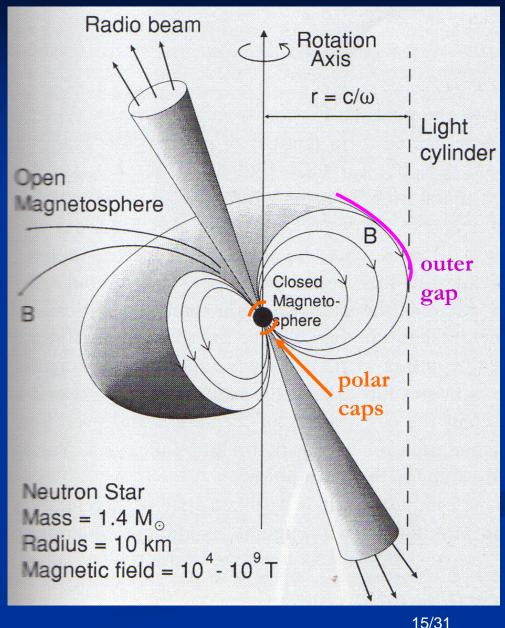
Pulsars

What is a Pulsar?


• A pulsar is a neutron star that emits *radio* pulses Pulses of radio waves occur regularly ■ Typically a few times per second, but fastest pulse a few hundred times a second (period $\sim 1-2$ ms) Emission is synchrotron or curvature radiation - Pulsars spin fast \Rightarrow must be small Radio pulsars are rapidly rotating *neutron stars* Centrifugal forces would tear apart larger stars • even NS would break up for periods ≤ 0.5 ms

The Discovery of Pulsars

- Pulsars were discovered in 1968
 by Antony Hewish and his
 student Jocelyn Bell
 - using a new radio telescope to search for quasars
 - periodic "scruff" looked different than normal man-made interference or quasar signals
 - first pulsar: Little Green Men?
 - within months found 3 more in different directions ⇒ not aliens
- Hewish won the 1974 Nobel Prize



Jocelyn Bell at the radio telescope where pulsars were discovered (1968)

Pulsars: The Basic Picture

- Intense, dipole magnetic field
- Magnetic poles and rotation axis can have any relative orientation
- Light cylinder
 - radius at which speed of light required to rotate with pulsar
 - separates open and closed magnetic field lines
- Pulsed emission from polar cap (radio) or "outer gap" near light cylinder

So what we see is...

- If the arrangement of the neutron star's rotation axis and magnetic poles cause the poles to sweep past the earth, we see a pulsar
- Pulsars make excellent clocks
 - spin down slowly: period grows by ~ ns/day
 - radiation powers Pulsar Wind Nebula
 - occasional "glitches"

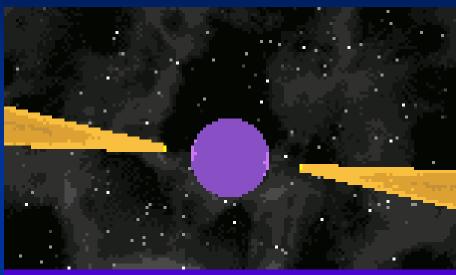
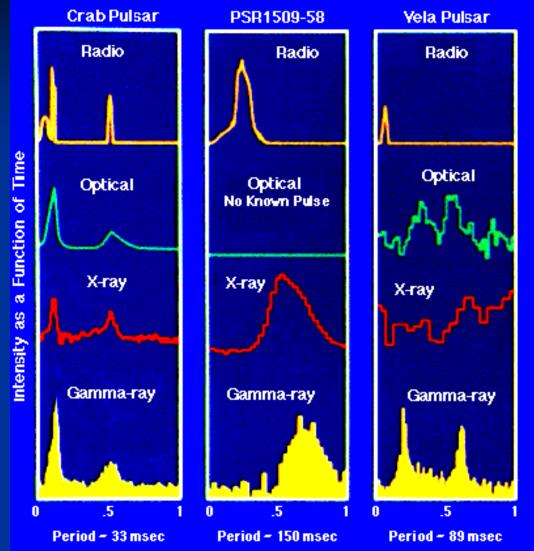
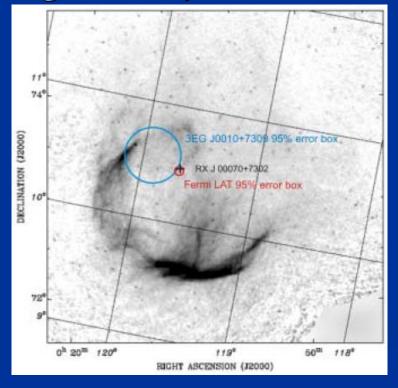
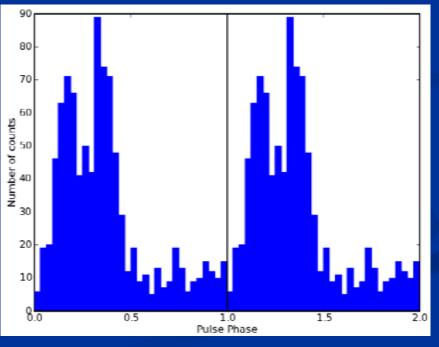



Image Credit: Michael Kramer (University of Manchester)

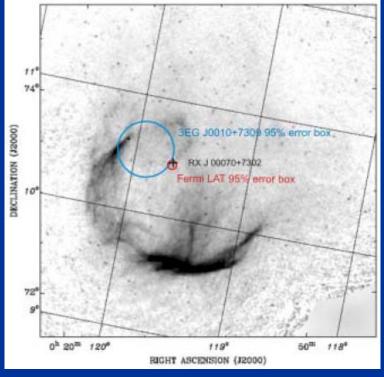
Pulsing Across the Spectrum

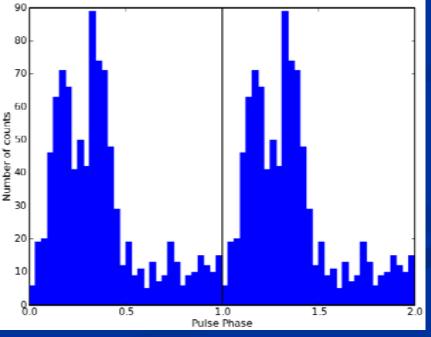

- Optical, X-ray, and gamma-ray pulses have been seen from many pulsars as well
- Great variety in structure of pulses
 - Viewing geometry
 - Size, location of emitting region
- Radio pulses mainly (?) from polar regions
- High-energy pulses...
 - polar cap region?
 - "outer gap" near light cylinder?



Time in Fractions of a Pulse Period

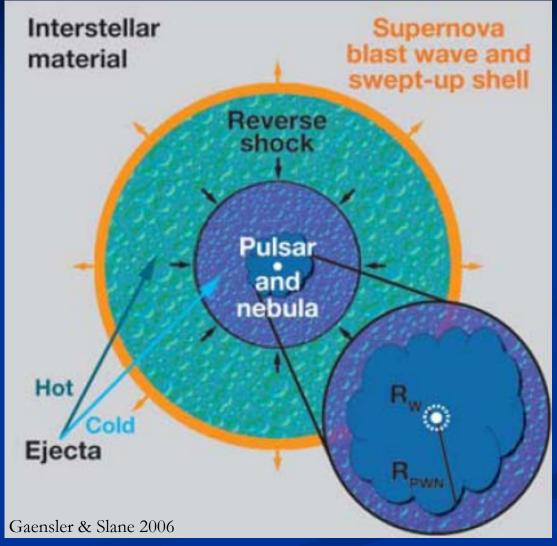
More Pulsars!


- Over 1700 radio pulsars have been found so far.
 - compared to ≤ 10 so far in gamma rays: will change rapidly with Fermi!
- Geminga: radio-quiet pulsar discovered in X-rays
- CTA 1: radio-quiet pulsar discovered by Fermi in gamma rays within weeks after launch



More Pulsars!

- Emission mechanism for high energies:
 - Polar caps: predicts narrow emission beam ⇒ sharper pulse peaks and fewer total pulsars discovered
 - Outer gap: predicts wide emission beam ⇒ wider pulses and more total pulsars discovered
 - CTA 1 appears to favor outer gap-type models
 - How many more will Fermi find?



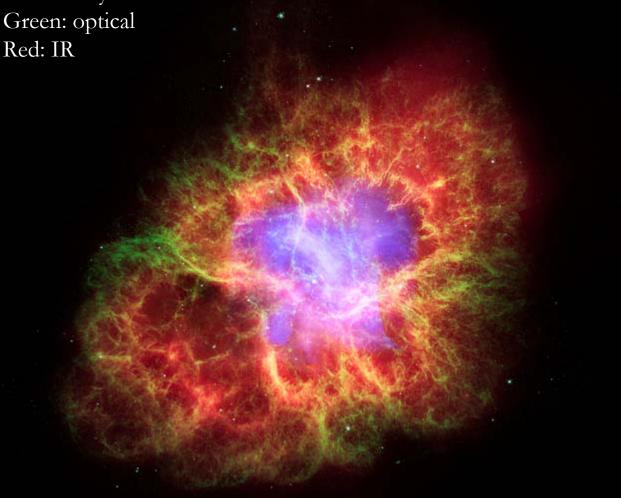
Pulsar Wind Nebulae

What is a Pulsar Wind Nebula?

- A Pulsar Wind Nebula is a cloud of electrons, positrons, and ions flowing away from the pulsar.
- The particles are
 - accelerated by the pulsar
 - and again where the nebula collides with the interstellar medium.
- Emits synchrotron radiation
 - radio \rightarrow X-ray
 - gamma rays: inverse Compton

What is a Pulsar Wind Nebula?

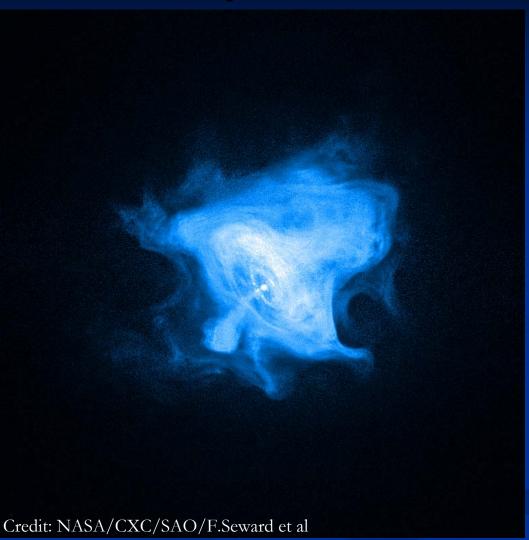
- A Pulsar Wind Nebula is a cloud of electrons, positrons, and ions flowing away from the pulsar.
- The particles are
 - accelerated by the pulsar
 - and again where the nebula collides with the interstellar medium.
- Emits synchrotron radiation
 - radio \rightarrow X-ray
 - gamma rays: inverse Compton



The Crab Nebula – Classic Example

Nebula is the remnant of SN 1054

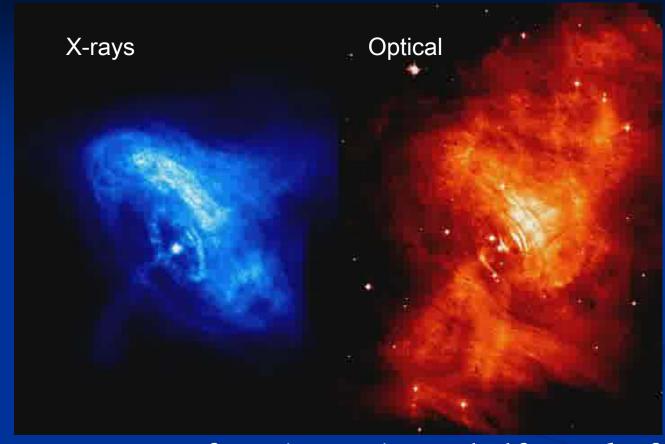
- No shell yet detected
- Image 8 arcmin ~ 0.13° across
- X-ray torus is shock front
- Filaments, arcs indicate magnetic fields


Blue: X-rays Red: IR

Credit: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/ESA/ASU/J.Hester & A.Loll; Infrared: NASA/JPL-Caltech/Univ. Minn./R.Gehrz

The Crab in X-rays

- Image from the Chandra X-ray satellite
- Shows extent of X-rayemitting nebula
- Synchrotron radiation
- Energetic e[±] travel
 speedily along magnetic
 field lines, slowly across
 them
 - Creates filaments, arcs



The Crab Nebula in TeV Gamma Rays

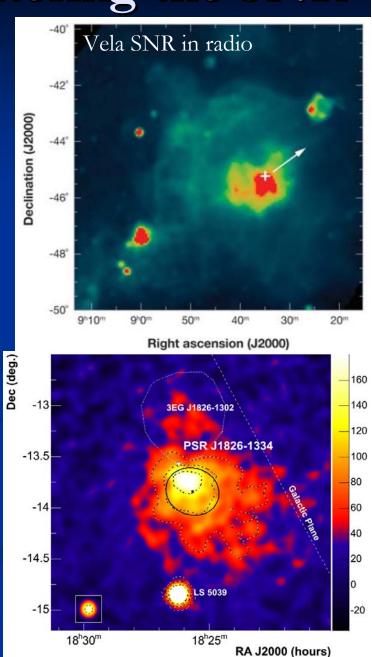
- The Crab is the brightest steady TeV gamma-ray source
- Looks like a point source in gamma rays
 - Where do the gamma rays come from?
 - Maximum energy?
- Pulsed gamma rays?
 - Seen by EGRET, Fermi satellites
 - Recently detected by MAGIC from ground

The Crab Nebula: The Movie

Wisp moves out from inner ring at half speed of light, merges with outer ring
 Images taken November, 2000 – April, 2001

Credit: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/HST/ASU/J.Hester et al.

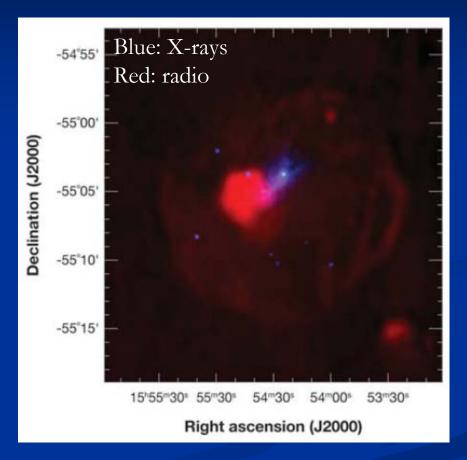
PWN Evolution: Youth


- Wind from pulsar drives shock into SNR interior
- Initially, nebula expands quickly
- Powered by charged particles and magnetic fields from pulsar at center
- SNR G21.5-0.9: a young, composite remnant

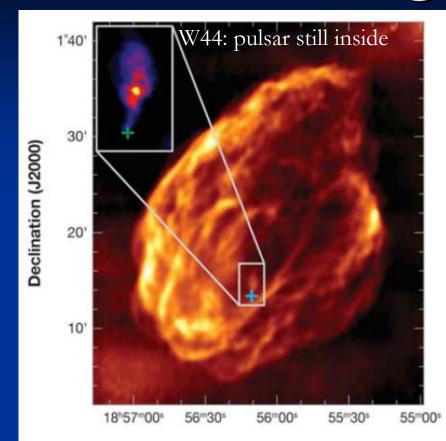
PWN Evolution: Encountering the SNR

- After SNR enters Sedov phase, the Reverse Shock from the SNR can interact with the PWN
 - reverse shock crushes, distorts PWN
 - PWN bounces back several oscillations over thousands of years
 - Meanwhile pulsar is migrating from birth place...
 - Vela SNR:
 - distorted pulsar wind nebula
 - pulsar offset from center
 - pulsar direction does not point to center!

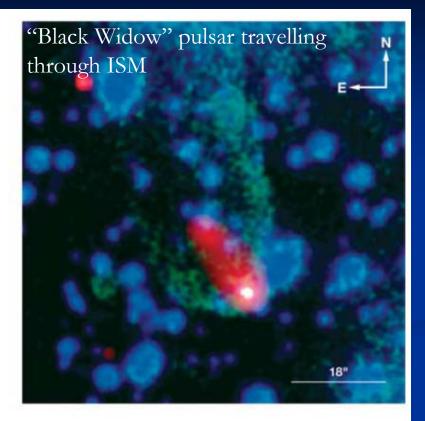
 HESS J1825 – TeV nebula similar to Vela



PWN Evolution: Making a run for it


 Pulsar born with a kick will eventually exit the SNR, trailing its nebula behind

SNR G327.1-1.1


 large, faint radio shell
 bright radio "relic" pulsar wind nebula
 neutron star in X-rays

Old PWN: Leaving the Remnant Behind

Right ascension (J2000)

- As pulsar approaches / passes shell of remnant, it becomes supersonic – surrounded by a bow shock
- Exits supernova remnant after $\sim 40,000$ years
- In ISM, eventually nebula fades from view...

Summary

- Neutron stars form from the collapse of massive stars and are supported against gravity by degenerate-neutron pressure.
- Pulsars are spinning neutron stars with strong magnetic fields.
 - Radio pulses probably originate near the magnetic poles.
 - High-energy pulses (optical, X-ray, gamma ray) can also be seen origins still unclear.
 - The Fermi gamma-ray observatory will provide a wealth of new information about pulsars.
- Pulsar wind nebulae are clouds of energetic particles that form from the winds coming off of pulsars.
 - Visible from radio through TeV gamma rays in some cases.
 - The Crab Nebula is the classic example brightest steady TeV gamma-ray source.
- Next week: Black holes and X-ray binaries, followed by luncheon
 - Luncheon sign-up deadline: December 8th.
- No lecture Nov 29th or Dec 6th!