Compton Lecture #4: Massive Stars and Supernovae

■ Welcome!

- On the back table:
 - Lecture notes for today's lecture
 - Extra copies of last week's are on the back table
 - Sign-up sheets
 - please fill one out only if you're not already on the Compton Lectures mailing list or need to change your address

Stars: Their Life and Afterlife

Massive Stars and Supernovae

Brian Humensky 68th Series, Compton Lecture #4 November 1, 2008

Outline

Evolution of Massive Stars
Supernova Zoo
White dwarfs and thermonuclear supernovae
Core-Collapse Supernovae

Key Points to Take Away

- Light/moderate mass stars form white dwarfs.
 - Isolated: fusion ends, heat slowly radiates away...
 - Close Binary: mass transfer can cause novae and/or Type Ia Supernovae.
- Runaway fusion reaction powers supernova explosion.
 - (no neutrinos)
- Massive stars burn until they form an iron core.
- Core collapse powers neutrino-driven supernova explosion.
 ≤ 1% of energy is transferred from neutrinos into visible supernova!
- SN 1987A confirmed general picture of core-collapse supernovae.
- Both types release as much kinetic energy as Sun releases starlight in its lifetime!

Evolution of Massive Stars

Second Red Giant Stage

- When core supply of ⁴He runs out, history repeats itself:
- Core contracts until degenerate-electron pressure takes over.
- Fusion in ⁴He shell.
- Star moves to Asymptotic Giant Branch.

Structure of an Asymptotic Giant Branch Star

Summary of Solar-Mass Stellar Evolution

- Core hydrogen fusion for 12 billion years (main sequence)
- Shell hydrogen fusion for 250 million years (red giant)
- Core helium and shell hydrogen fusion for 100 million years (horizontal branch)
- Shell helium and hydrogen fusion (asymptotic giant phase)
- White dwarf phase, fusion completed

This series of stages is similar for all stars with initial masses in the range $0.4 - 4.0 M_{\odot}$.

Fusion in Massive Stars

- Massive stars ($\gtrsim 8 M_{\odot}$) go through many fusion stages beyond ⁴He:
 - \blacksquare For a 25 M $_{\odot}$ star

• Compare: water density is $1000 \text{ kg/m}^3 = 1 * 10^3 \text{ kg/m}^3$

Fusion Stage	Core Temp (K)	Core Density (kg/m ³)	Duration of Stage	Notes
Hydrogen	$4 * 10^{7}$	$5 * 10^3$	$7 * 10^{6}$ years	Main sequence
Helium	$2 * 10^8$	$7 * 10^5$	$7 * 10^5$ years	
Carbon	6 * 10 ⁸	$2 * 10^8$	600 years	Neutrino cooling
Neon	1.2 * 109	4 * 10 ⁹	1 year	
Oxygen	$1.5 * 10^9$	$1 * 10^{10}$	6 months	
Silicon	$2.7 * 10^9$	$3 * 10^{10}$	1 day	Produces iron

Stages require increasingly higher temperatures and densities

Star exhausts each fuel increasingly rapidly

- less energy yield per reaction
- energy losses star gets very luminous in neutrinos!

Heavy Stars as Onions

Stellar Winds, Mass Ejection

- Late-stage massive stars are unstable, lose mass
 - steady winds: 10⁻⁴ M_☉/yr
 - ejection events

 Eta Carinae shows evidence of past outbursts and a wind
 ~ 100 – 150 M_☉

ρ Cassiopeiae

ρ Cas is a yellow supergiant
 ~ 40 M_☉
 SN candidate
 Major outburst in 2000-2001

Harvard-Smithsonian Center for Astrophysics Smithsonian Astrophysical Observatory, MA

Alex Lobel

Presents

THE MILLENNIUM OUTBURST OF THE YELLOW HYPERGIANT RHO CASSIOPEIAE

Supernova Zoo

Common features of SNe

- Rate: Roughly ~2/century total in our galaxy
- High-speed outflow of majority of star's mass
 - speeds of 10 20 million m/s, few % speed of light
- Synthesis of heavy elements
- Radioactive isotopes of heavy elements (especially ⁵⁶Ni and ⁵⁶Co) power the emission we see at late times
- SNe are nonthermal emitters!
 Similar kinetic energy release

 ~ 10⁵¹ ergs ≈ Sun's lifetime!

 Understanding SNe relies

 heavily on simulations!

Differences Amongst Supernovae

	Thermonuclear	Core Collapse
Progenitor	White dwarf in a binary system	≥ 8 ${\rm M}_{\odot}$ star
Location	Anywhere	Star-forming regions
Fraction of SNe	~ 20%	~ 80%
Local Environment	Low-to-average density	Complex
Final Result	Complete disruption	Neutron star or black hole

Also: shape, spectrum of optical light curve varies

White Dwarfs and Thermonuclear Supernovae

White Dwarf Stars

- Post-fusion, hot core left behind is supported by a degenerate-electron sea.
 - masses ≤ 4 M_☉: carbon/oxygen
 - masses ~ 4 8 M_☉: oxygen/neon
- (nearly) The end of their evolution.

White Dwarfs Again – Isolated Evolution

- Slowly radiate away their heat.
- The Sun will eventually form a white dwarf with ~10% its current luminosity, or 0.1 L_☉.
 After 5 Gyr as a white dwarf, the Sun's luminosity will be ~10⁻⁴ L_☉ and dropping...

White Dwarfs in Binary Systems

- More massive star evolves more rapidly becomes a white dwarf first.
- Less massive star evolves along the main sequence, but if the two stars are close enough...

White Dwarfs in Binary Systems

Companion star

White dwarf

 ... White dwarf sucks in (accretes) gas from companion, eventually reaching a critical mass.

John Blondin, NCSU

- Novae occur when a white dwarf accretes hydrogen very slowly from a neighbor.
- At a critical temperature, the entire surface burns at once.
- Novae release as much energy as the Sun does in 1000 years.
- White dwarf and companion survive; repeat performances are possible!

Type Ia Supernovae

- Similar mechanism to Novae, details still unclear.
 - Mass accretion till near Chandrasekhar limit.
- Runaway fusion in carbon/oxygen core (similar to helium flash)
- 10 million times more energetic than a nova.
 - Equal to lifetime output of Sun
 - White dwarf is completely destroyed

Remember SN 1006?

- Young only 1002 years
- Type Ia
 - no compact remnant detected
 - no companion star detected either
- Nearly uniform lowdensity environment
 - nearly symmetrical development (except NW)
 - no nearby star formation

Tycho's Supernova

Similar to SN 1006 in a lot of ways

- Young, observed by Tycho Brahe in 1572, low-density medium
- Recently confirmed as Type Ia by observing reflections of its original explosion!

Type Ia Supernovae as Standard Candles

- Some SN Ia occur in nearby galaxies where we can measure distance accurately by other means – calibrating distance/brightness scale
- Then can use SN Ia to measure distance to farther galaxies.
- Independently measure redshift using spectral lines.
- Comparison measures expansion history of the universe – provided first indication that expansion of universe is accelerating!
 - confirmed by measurements of CMB, large-scale structure
 - but identity of the "dark energy" driving this acceleration remains a mystery

Core-Collapse Supernovae

What happens when the burning ends?

Core cools rapidly

- neutrino cooling
- lose degeneracy pressure: $e + p \rightarrow n + v$
- Free fall inward in ~ 0.25 seconds at 25% speed of light
 - Gravity unleashed: collapse from earth-size to ~ 30 km radius!
 - "Bounce"
 - inner core becomes rigid at nuclear density
 - proto-neutron star
 - outer core bounces off
 - outgoing shockwave heats infalling matter, dissipates
- Neutrinos + convection revive outgoing shockwave
 - outer layers blown off explosion!
 - 25- M_{\odot} star: over 90% of mass ejected

Boom.

t = 0.1 sec, r = 200 km

t = 0.2 sec, r = 300 km

t = 0.3 sec, r = 500 km t = 0.5 sec, r = 2000 km

Woosley and Janka, arXiv:astro-ph/0601261

Core Collapse and Explosion: the Movie

Credit: NASA/CXC/D.Berry

Supernova Animation – Outside View

■ NASA HEASARC

http://heasarc.gsfc.nasa.gov/docs/snr.html

How does the Explosion Explode?

- Powered by gravitational potential energy released by *core*.
- Basic picture validated by SN 1987A.
- Detailed understanding requires detailed computer models:
 - Nuclear reactions, convection, rotation, magnetic fields....
- If proto-neutron star cools and/or accretes matter too quickly, it collapses \rightarrow black hole
 - No explosion!
 - Otherwise, condenses into neutron star, ~ 10-km radius
- Can also form a black hole post-explosion
 - as matter falls back onto neutron star

SN 1987A Before and After

http://imagine.gsfc.nasa.gov/docs/science/know_l2/supernovae.html

SN 1987A

Core collapse of a massive star

- Progenitor was Sanduleak -69 202, in the Large Magellanic Cloud
 - 160,000 light years distant
 - discovered by Shelton, Duhalde, and Jones on Feb 23, 1987
 - surprisingly, a blue supergiant instead of red
 - mass ~ 20 M_☉ prior to supernova
- Optical light curve dimmer than expected
 but explained by progenitor

SN 1987A in Neutrinos

- Two neutrino detectors saw a total of 19 neutrinos
 - exactly consistent with theory!
 - \rightarrow 3 * 10⁵³ ergs released by SN in neutrinos
 - 1.5 * 10⁵¹ ergs released in kinetic energy
- Neutrinos arrived ~ 3
 hrs before optical SN
 began
- Today, bigger/better neutrino detectors wait for the next supernova!

SN 1987A Today

Three-ring system - matter ejected by star 10-20kyr before SN

- ionized by SN X-rays
- inner ring struck by shock wave

foreground stars

Center: no neutron star seen yet - obscured? - too dim to see? - black hole?

Summary

- Light/moderate mass stars form white dwarfs.
 - Isolated: fusion ends, heat slowly radiates away...
 - Close Binary: mass transfer can cause novae and/or Type Ia Supernovae.
- Runaway fusion reaction powers supernova explosion.
 - (no neutrinos)
- Massive stars burn until they form an iron core.
- Core collapse powers neutrino-driven supernova explosion.
 ≤ 1% of energy is transferred from neutrinos into visible supernova!
- SN 1987A confirmed general picture of core-collapse supernovae.
- Both types release as much kinetic energy as Sun releases starlight in its lifetime!
- Next week: Following the supernova remnant where does all that energy go and how does it affect the interstellar environment?