Compton Lecture #3: The Life and Times of Low Mass Stars

Welcome!

- On the back table:
 - Lecture notes for today's lecture
 - Extra copies of last week's are on the back table
 - Sign-up sheets please fill one out if you're not already on the Compton Lectures mailing list

Stars: Ther Life and Times of Low Mass Stars

> Brian Humensky 68th Series, Compton Lecture #3 October 25, 2008

Outline

Preliminaries

Evolution along the main sequence

- Evolution beyond the main sequence
- White dwarfs, Novae and Type Ia supernovae

Key Points to Take Away

- Stellar evolution is dominated by initial mass
 - composition plays a secondary role
- Fusion is the primary energy source
- Stars spend most of their time on the main sequence, burning hydrogen
- Stellar evolution driven by search for hydrostatic equilibrium
 - exciting things happen when stars fall out of equilibrium
- Stellar interiors behave like ideal gases in *most* circumstances
- In key cases, have a degenerate gas instead with very different properties
- Final states: 85% of stars will end as red dwarfs, most of the rest will end as white dwarfs. A few "lucky" stars go supernova:
 - Massive stars go through core collapse \rightarrow neutron stars or black holes
 - White dwarfs in close binary systems suffer thermonuclear explosion → total disruption

Preliminaries

Hydrostatic Equilibrium

- Hydrostatic equilibrium is the balancing of the downward pull of gravity by a pressure gradient
 Gravity + P_{above} = P_{below}
- Loss of hydrostatic equilibrium leads to exciting events in the life of a star

(a) Material inside the sun is in hydrostatic equilibrium, so forces balance

Fusion is the primary power source

- Only power source capable of sustaining stellar structure against gravity for the time scales needed.
 - 4 ${}^{1}H \rightarrow {}^{4}He + neutrinos + gamma rays$
- $\mathbf{E} = \mathbf{mc}^2$ in action!
 - 0.7 % of mass of hydrogen ions is converted to energy during fusion into helium.

Stellar Interiors (usually) Act Like Ideal Gases

- In an Ideal Gas, there is a simple relationship between pressure, temperature, and density:
- This implies:
 - As a gas expands, it cools
 - As a gas is compressed, it heats up
- In a star, this provides a safety value:
 - If the rate of fusion rises, the temperature tends to rise
 - The temperature rise increases the pressure, expanding the gas just enough to cool the gas back down and stabilize the rate of fusion
 - Thermal equilibrium is maintained

Stellar Evolution is Dominated by Mass...

Mass Range (M_{\odot})	Lifetime Range	Final State
≤ 0.08	Failed star	Brown Dwarf
0.08 – 0.4	≫ 100 Gyr	Red Dwarf
0.4 - ~8.0	≫ 100 Gyr - ~100 Myr	White Dwarf*
~8.0 - ~20-30	~100 Myr - ~ 4 Myr	Neutron Star
≥ 20-30	$\lesssim 4 \mathrm{Myr}$	Black Hole

* White Dwarfs in binary systems may explode as Type Ia supernovae, leaving no compact object behind

...but Composition Also Plays a Role

Our Sun is a pretty typical star – starting composition

- 74% hydrogen
- 25% helium
- 1% metals (elements heavier than helium)
- Stars that begin with extra helium:
 - Hydrogen burns faster \rightarrow lifetime is shorter
 - Outer layers are less opaque \rightarrow star is brighter & hotter
- Stars that begin with extra metals:
 - Little effect on fusion rates
 - Outer layers are more opaque \rightarrow star is dimmer & cooler

Evolution Along the Main Sequence

Hertzsprung-Russell Diagrams Show the Relationship between Luminosity and Temperature

- The Main Sequence curves from lower-right to upper-left (cool/dim to hot/bright).
- Stars do NOT travel along the Main Sequence!
 - Their location on the Main Sequence is determined by their mass.
 - Stars form a "sequence" of colors/luminosity as a function of their mass.
- Note the enormous range of luminosities!
- Stars spend most of their lifetime on the Main Sequence.

Main Sequence Evolution of the Sun

Supply of core hydrogen good for ~12 Gyr.
Little mixing between core and rest of star.
Core temperature: 16 million K
Surface temperature: 5800 K

Core is contracting very slowly over time as it burns ¹H into ⁴He.

Main Sequence Evolution continued

- Pressure rises → temperature rises → rate of fusion rises → luminosity rises → radius increases.
- Sun is 40% more luminous, 6% larger, and 300 K hotter than at birth.

Red Dwarfs

- Stars with masses $\leq 0.4 \text{ M}_{\odot}$ evolve similarly to Sun until they exhaust their hydrogen.
 - Key difference: convection throughout star mixes core, outer layers thoroughly → ALL hydrogen burns.
 - Final state is a ball of helium!
 - Hydrogen-burning phase is 100's Gyrs.
- Too light to burn helium these "Red Dwarfs" will gradually cool and dim over time...
- About 85% of all stars fall in this category.

Evolution After the Main Sequence

Leaving the Main Sequence

- Core supply of hydrogen runs out after ~12 Gyr
 Core now primarily ⁴He

 initially too cool to burn

 Thin shell of ¹H just outside core burns
 Core compresses, heats up
- Shell heats due to core, expands...

Red Giants

- As shell ¹H burning progresses, star enters the Red Giant phase.
 - Luminosity and size increase, surface temperature drops.
 - Star moves off main sequence towards realm of Giants.
 - Shell burning lasts ~250 Myr.

Absolute visual magnitude

Red Giants

Beginnings of ⁴He Burning

Burning of ⁴He into carbon and oxygen begins when core temperature reaches 100 million K. How ⁴He burning starts depends on mass: $\blacksquare \ge 2-3 \text{ M}_{\odot}$: ⁴He burning begins gradually, smoothly $\blacksquare \leq 2-3 \text{ M}_{\odot}$: ⁴He burning begins explosively High-mass stars have a core that contracts until hot enough to burn ⁴He. Low-mass stars have a core supported by electron degeneracy...

Electron Degeneracy

- Quantum mechanics limits how densely free electrons can be packed together.
 - Pauli exclusion principle: two electrons cannot simultaneously occupy the same quantum state
 - (i.e., same position + momentum + spin)
 - Quantum mechanical way of saying you cannot have two objects in the same place at the same time
- When a population of electrons cannot be packed any closer, they provide a powerful pressure against further contraction
 - The electrons are said to be in a state of degeneracy
 - Degenerate-electron pressure is independent of temperature

⁴He Burning continued

- In low-mass stars, the ⁴He ions and their electrons are packed so densely that the electrons are degenerate.
- As the temperature rises, the pressure remains the same.
- When the temperature reaches 100 million K, ⁴He burning begins – rapidly heating the core.
- Hotter \rightarrow yet faster burning \rightarrow Helium Flash!
- Eventually hot enough that electrons lose degeneracy and ⁴He burns as in more massive stars.

The Horizontal Branch

- With steady ⁴He burning, the core expands and cools.
- In response, the hydrogen shell cools and stops burning.
- The outer layers contract but heat up – luminosity stays ~ constant as radius drops but temperature rises.
- Welcome to the Horizontal Branch!
- Core ⁴He burning lasts ~100 Myr.

Second Red Giant Stage

- When core supply of ⁴He runs out, history repeats itself:
 - Core contracts until degenerate-electron pressure takes over.
 - Heating of ⁴He-rich shell causes shell helium fusion.
 - Star enters a second redgiant phase, along the Asymptotic Giant Branch.

Structure of an Asymptotic Giant Branch Star

Thermal Pulses

- When burning in the helium shell wraps up, the dormant hydrogen shell contracts, heats, and ignites.
- Eventually helium shell reignites in a helium shell flash.
- Luminosity of AGB star spikes: "thermal pulse"
- Outer layers of star can be ejected by these pulses.
- Pulses can repeat every ~100,000 years.

Planetary Nebulae Central star

- The ejected outer layers of stellar material form a "planetary nebula"
 - (no relation to planets!)
- The bare, hot stellar core illuminates the nebula with UV light; we see them in fluorescence.
- The nebulae expand slowly (~10 – 30 km/s) and after ~50 kyr fade from view.
- The gases mix with the ISM, enriching it in helium, carbon, nitrogen, and oxygen.

White Dwarf Stars

- The hot core left behind by the thermal pulses is primarily carbon and oxygen in a degenerate-electron sea.
- Stars with masses ≤ 4 M_☉ cannot generate the temperate and pressure needed for fusion beyond helium.
- These are White Dwarf stars, and in most cases this is nearly the end of their evolution.

Summary of Solar-Mass Stellar Evolution

- Core hydrogen fusion for 12 billion years (main sequence)
- Shell hydrogen fusion for 250 million years (red giant)
- Core helium and shell hydrogen fusion for 100 million years (horizontal branch)
- Shell helium and hydrogen fusion (asymptotic giant phase)
- White dwarf phase, fusion completed
- This series of stages is similar for all stars with initial masses in the range $0.4 4.0 \text{ M}_{\odot}$.
- More massive stars are able to start fusion reactions involving carbon and oxygen \rightarrow next week.

White Dwarfs, Novae, and Type Ia SNe

White Dwarf Stars

- The hot core left behind by the thermal pulses is primarily carbon and oxygen in a degenerate-electron sea.
- Stars with masses ≤ 4 M_☉ cannot generate the temperate and pressure needed for fusion beyond helium.
- These are White Dwarf stars, and in most cases this is nearly the end of their evolution.

White Dwarfs Again – Isolated Evolution

White dwarfs slowly radiate away their heat. ■ The Sun will eventually form a white dwarf with $\sim 10\%$ its current luminosity, or $0.1 L_{\odot}$. After 5 Gyr as a white dwarf, the Sun's luminosity will be $\sim 10^{-4} L_{\odot}$ and dropping...

White Dwarfs in Binary Systems

 The more massive member of a pair of sunlike stars exhausts its fuel and turns into a white dwarf star.

The less massive star evolves along the main sequence, but if the two stars are close enough...

White Dwarfs in Binary Systems

Companion star

The white dwarf sucks in gas from its companion, eventually reaching a critical mass.

Classical Novae

Novae occur when a white dwarf accretes hydrogen very slowly from a neighbor.

When the hydrogen surface is hot enough to ignite, the entire surface burns at once.

■ Novae release as much energy as the Sun does in 1000 years.

White dwarf and companion survive; repeat performances are possible!

Type Ia Supernovae

- Similar mechanism to Novae, details still unclear.
- Runaway fusion in carbon/oxygen core (similar to helium flash)
- Perhaps initiated by
 - Mass accretion increases core pressure till carbon ignites?
 - Explosive burning of ⁴He surface layer → shock wave compresses core?
- 10 million times more energetic than a nova.
 - Equal to lifetime output of Sun
 - White dwarf is completely destroyed

Remember SN 1006?

- Young only 1002 years
- Type Ia
 - no compact remnant detected
 - no companion star detected either
- Nearly uniform lowdensity environment
 - nearly symmetrical development (except NW)
 - no nearby star formation

Common features of SNe

High-speed outflow of majority of star's mass
 speeds of 10 – 20 million m/s, few % speed of light
 Availability of copious quantities of neutrons and far-from-equilibrium conditions allows synthesis of large quantities of heavy elements
 Radioactive isotopes of heavy elements (especially ⁵⁶Ni and ⁵⁶Co) power the emission we see

SNe are nonthermal emitters!

Type Ia Supernovae as Standard Candles

- Some SN Ia occur in nearby galaxies where we can measure distance accurately by other means – calibrating distance/brightness scale
- Then can use SN Ia to measure distance to farther galaxies.
- Independently measure redshift using spectral lines.
- Comparison measures expansion history of the universe – provided first indication that expansion of universe is accelerating!
 - confirmed by measurements of CMB, large-scale structure
 - but identity of the "dark energy" driving this acceleration remains a mystery

Summary

- Stellar evolution is dominated by initial mass
 - composition plays a secondary role
- Fusion is the primary energy source
- Stars spend most of their time on the main sequence, burning hydrogen
- Stellar evolution driven by search for hydrostatic equilibrium
 - exciting things happen when stars fall out of equilibrium
- Stellar interiors behave like ideal gases in *most* circumstances
- In key cases, have a degenerate gas instead with very different properties
- Final states: 85% of stars will end as red dwarfs, most of the rest will end as white dwarfs. A few "lucky" stars go supernova:
 - Massive stars go through core collapse \rightarrow neutron stars or black holes
 - White dwarfs in close binary systems suffer thermonuclear explosion → total disruption
- Next week: Evolution of massive stars and Core-collapse SNe